
6 JUNE 2008 PDMA Visions MAgAziNE

What do you do when your launch date is approaching and there are unexpected obstacles? What if you have options to enlist more 
resources? This article explores the implications of adding resources and minimizing risks.

Alistair Cockburn states, “Software development is a series 
of goal-directed, resource-limited, cooperative games of 
invention and communication. The primary goal of each 

game is the production and deployment of a software system; 
the residue of the game is a 
set of markers to assist the 
players of the next game.”1 
Cockburn (pronounced 
Coburn) describes himself 
as “project witchdoctor 
and IT strategist.” He is 
also a coauthor of the Agile 
Development Manifesto.2

Cockburn’s insight ap-
plies to new product devel-
opment (NPD). It provides 

an approach to develop products that are validated by abundant 
sales at launch. It provides guidance on how to select the appro-
priate development resources. It embraces NPD concepts such 
as Product Lifecycle Management and system-level training to 
improve contributors’ skills for the next NPD effort. Brooks’ Law 
provides another important insight.

Summary of Brooks’ Law
Frederick P. Brooks, Jr. is a software engineer, computer 

scientist, and the author of the highly influential book, The 
Mythical Man-Month, which was first published in 1975.3 An 
oversimplified explanation of Brooks’ Law is “adding manpower 
to a late software project makes it later.” Brooks’ Law provides 
an appropriate warning for managers of software projects that 
are behind schedule. 

Brooks cites learning curve factors and communication factors 
as the primary reasons for the additional strain on software projects 
that are likely to cause them to fall further behind schedule. For 
example, training engineers new to the project diverts resources 
and diminishes the productivity of the established staff. Code 
produced by engineers new to the project is more likely to require 
rework because these engineers make errors consistent with their 
neophyte status. Communication overhead increases as more 
contributors are added to the project. According to the model de-
veloped by Abdel-Hamid and Madnick in the 1991 book Software 
Project Dynamics: An Integrated Approach that is described by 
Brooks, the later in the project that the additional resources are 
added, the higher the potential for problems.4

“ According to...Abdel-Hamid 
and Madnick... the later in the 
project that the additional re-
sources are added, the higher 
the potential for problems.”

Sometimes, Brooks’ Law is cited inappropriately as an argument 
for not adding resources to an understaffed project. In addition, 
Brooks’ Law does not apply directly to contributors that perform 
tasks that can be easily partitioned and isolated—those tasks 
that do not have a significant learning curve and require minimal 
communication. 

Brooks’ Law and new product development
In NPD, an intrinsic aspect of preparing for product launch is 

that resources are added late in development. Therefore, the impact 
of Brooks’ Law may be amplified while preparing for launch. 
Problems that can occur due to the late addition of resources or 
limited communication include the following examples: 

•	 Because	of	terminology	differences,	communication	between	
disparate disciplines (such as engineering and public rela-
tions) can be difficult. 

•	 Because	contributors	are	likely	to	be	geographically	dispersed,	
there will be multiple channels of communication.

•	 Since	team	members	do	often	not	have	the	same	managers,	
there are additional learning curve and communication fac-
tors. 

•	 Since	 the	preparation	for	a	successful	new	product	 launch	
requires contributions from many disciplines, there are 
additional learning curve factors—outside of traditional 
production—required to harmonize launch goals. Common 
conflicts include the sales organization requesting additional 
product features while engineering considers eliminating 
planned features in order to meet the launch deadlines. 

Brooks’ Law impacts launch strategy decisions. For a given 
obstacle, should resources be added? Or should the team make 
other adjustments to overcome the problem? Using a concept from 
martial arts can be helpful as a launch strategy is developed.

Shu, Ha, and Ri levels of mastery
Shuhari is a martial arts concept that Cockburn and others have 

popularized to provide software development insights. When 
differences in the level of mastery among team members are 
considered, misunderstandings are minimized. Shuhari concepts 
can be used in NPD to reveal insights about learning curves and 
to facilitate communication. This applies to intradisciplinary and 
interdisciplinary situations. It applies to both individual contribu-
tors and their managers, as seen in Exhibit 1.

From a discipline specific perspective, a Shu-level contributor 
should be encouraged to follow templates and adopt a predefined 

Launch Pad

Insights on Brooks’ Law and 
launch

Mark A. Hart, NPDP, Visions Launch Editor, Founder of OpLaunch 
(mark_hart@oplaunch.com)Mark A. Hart

up Front



7JUNE 2008PDMA Visions MAgAziNE

SOURCE: The Author

Exhibit 1: Using the Japanese Martial Art of Shuhari to Identify Stages of Learning in NPD
 

Shuhari is a martial arts concept that Alistair Cockburn and others have popularized to provide software development insights. 
Shuhari concepts can be used in new product development to reveal insights about learning curves and to facilitate communication.

Level of mastery Characteristics in a martial arts 
context

Characteristics in discipline 
specific context

Characteristics in a systemic, 
NPD context 

Shu—Follower Beginners copy the techniques 
presented by their instructor. 
Students learn techniques advo-
cated by a particular discipline. 
Students do not explore the 
limits of these techniques or 
alternative techniques.

Contributors are likely to em-
brace techniques consistent with 
numerous templates gleaned 
from commonly available sourc-
es within their discipline. 

Management and development 
activities are not symbiotic. 
Development priorities across 
disciplines are not aligned. In-
consistent launch results due to 
sub-optimization. 

Ha—Breakaway After many years of training and 
after attaining a high-level black 
belt, students explore the limits 
of techniques they have learned 
and are allowed to explore ex-
ceptions.

Contributors select from a variety 
of techniques that could be used 
to solve a specific problem and 
implement the most appropriate 
technique based on context.

After exploring a large percent-
age of the disciplines required 
for NPD (from ideation to launch, 
and including Product Lifecycle 
Management) and mastering 
more than one specific contrib-
uting discipline, practitioner is 
able to recognize and evolve 
nonaligned procedures to pro-
duce more consistent, systemic 
NPD results. 

Ri—Fluent Performs martial arts movements 
automatically. Shift techniques 
instantaneously.

Mastery of theory, fundamen-
tals, and application enables 
contributors to provide solutions 
to new problems in diverse en-
vironments. 

Adapts to emergent conditions 
(such as change in market condi-
tions or loss of key team mem-
bers) regardless of development 
environment to deliver innovative 
solutions that dramatically con-
tribute to NPD success. Inspires 
and mentors other discipline 
specific contributors to produce 
exceptional results.

vocabulary. A Shu-level contributor is not ready to explore/evalu-
ate multiple techniques. The productivity of a Shu-level contribu-
tor can range from mediocre to exceptional.

From a systemic, NPD perspective, a development team that 
operates at a Shu-level selects generalized best practices in the 
hope of achieving success at product launch. 

Ha-level contributors are more likely to understand the guide-
lines and goals. They often improve the methodology. They are 
more likely to understand the intent of the procedures and find 
unique ways to contribute to the development effort. Within a given 
discipline, Ha-level contributors are ideal mentors for Shu-level 
contributors because they share a common vocabulary.

Ri-level contributors are pioneers that transcend historical 
methodology. They are the most likely to provide solutions to 

difficult problems, such as identifying critical paths and minimiz-
ing integration risks.

 A contributor can be characterized with respect to their mastery 
within a specific discipline and their ability to impact system-level 
results. For example, a software developer may be a Ha-level 
coder but not have the understanding to collaborate with other 
team members to maximize NPD success. 

Improving nPD communications in an agile 
environment

Incorporating better tools is one way to improve communica-
tions. For example, NPD collaboration tools can improve the 
communication of geographically disbursed teams because they 
facilitate:



8 JUNE 2008 PDMA Visions MAgAziNE

•	Multiple	 channels	 of	 communication	 (such	 as	 face-to-face,	
voice, video, and instant messaging)

•	Management	 of	 multiple	 versions	 of	 documents	 and	 other	
files

•	Sharing	of	current	prototypes	and	other	deliverables
•	Secure	communication	for	internal	and	external	contributors
•	Maximum	effectiveness	of	group	meetings
•	Quiet	and	effective	thinking	time	for	developers.	
The careful selection of team members can minimize commu-

nication ambiguity. The best option is to enlist highly productive 
resources that have experience with your team. Shared experiences 
minimize assimilation delay (that is, the time required for a new 
resource to become productive). Another option is to select re-
sources that are better positioned to interpret your intent and your 
specifications. A Ha-level contributor is more likely to develop 
an innovative plan for a domain specific action that relates to an 
NPD goal than a Shu-level contributor. 

Open-source paradigm and massive collaboration
Brooks’ Law includes a warning about adding resources. Linus’ 

Law advocates massive collaboration. An organization’s culture 
determines which generalization predominates.

Brooks’ Law is based on observations from traditional software 
development projects that include an organizational hierarchy, 
constrained resources, and a scheduled product launch date. Linus’ 
Law provides insights from open-source approaches characterized 
by a network of contributors and the evolution of a code base. As 
defined by Eric S. Raymond, a computer programmer, in the es-
say “The Cathedral and the Bazaar,” Linus’ Law is “given a large 
enough beta-tester and co-developer base, almost every problem 

will be characterized quickly and the fix obvious to someone.”5 
This central thesis is named after Linus Torvalds, the leader of 
the Linux kernel project. Raymond’s essay provides the following 
insights that relate to effective communication:

An open-source development environment makes it far easier 
for testers and devel-
opers to “develop a 
shared representation 
grounded in the actual 
source code and to 
communicate effec-
tively about it.”

Parse tasks so that 
the “halo developers 
work on what are in ef-
fect separable parallel 
subtasks and interact with each other very little.” Ensure that “code 
changes and bug reports stream through the core group.”

The essay also includes the following insights that relate to the 
mastery level of the developers:

“Good programmers know what to write. Great ones know 
what to rewrite.” 

“The next best thing to having good ideas is recognizing good 
ideas from your users.”

Fortunately, insights from Brooks’ Law and Linus’ Law can be 
harmonized to develop a system-level perspective that maximizes 
the potential for a successful launch.

Managing resources that impact launch
To maximize the potential for an on-time launch, evaluate the 

mastery level of the proposed development resources and the com-
munication implications. Brooks’ Law indicates that under some 
conditions it would be prudent to decline additional resources. 
Alternatively, a comprehensive understanding of Brooks’ Law can 
help project leaders identify exceptions that enable resources to 
be added to a project that can improve productivity. 

When you are adding capability to prepare for launch, select 
resources with a high level of domain mastery to ensure that the 
widest variety of problems (known and emergent) can be resolved 
quickly. Selecting resources that have a sharable vocabulary and 
up-to-date, valuable information facilitates interdisciplinary 
communication. Because a product launch requires system-level 
contributors to select the appropriate development resources that 
will solve the appropriate problems in the appropriate sequence 
in order to deliver a product at the appropriate time, insights from 
Brooks’ Law can guide your NPD staffing decisions. §

endnotes
1. “Alistair Cockburn” (http://alistair.cockburn.us).
2. “Agile Development Manifesto” (http://agilemanifesto.org/).
3. Frederick P. Brooks, Jr., The Mythical Man-Month: Essays on 
Software Engineering, Anniversary Edition, (Boston, Mass.: Addison-
Wesley, 1995).
4. Tarek Abdel-Hamid and Stuart E. Madnick, Software Project 
Dynamics: An Integrated Approach, (Upper Saddle River, N.J.: 1991).
5. . Eric S. Raymond, “The Cathedral and the Bazaar” (http://www.
catb.org/~esr/writings/cathedral-bazaar/cathedral-bazaar/).

 

“ Brooks’ Law indicates that 
under some conditions, it 
would be prudent to decline 
additional resources.”


